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INTEGRAL FORMULAS FOR SUBMANIFOLDS
AND THEIR APPLICATIONS

D. J. SHETTY & KRISHNA AMUR

Introduction

Integral formulas of Minkowski type have been studied and applied in
characterizing umbilical submanifolds by Chen {3], Katsurada [5], [6], [7],
K&jyo [6], Nagai [7], Okumara [10], Tani [11] and Yano [3], [8}, [9], [10}, [11].
These authors assumed that the normal vector field e with respect to which
the integral formulas were obtained was parallel in the normal bundle'. The
purpose of this paper is to extend the study of the above authors. We obtain
the most general integral formulas for a submanifold of a Riemannian space
of constant sectional curvature without putting any restriction on the unit
normal vector field e, and under conditions which are weaker than the
condition that e be parallel in the normal bundle we obtain integral formulas
of Minkowski type and apply them to the study of umbilical submanifolds.
We give concrete illustrations fo substantiate our generalisations.

1. Preliminaries

Let M be an orientable differentiable manifold of dimension n imbedded in
an orientable m-dimensional Riemannian manifold N of constant sectional
curvature. Let #® = u“(x") denote the local expression of the submanifold M
in N. Here and in the sequel a, b, ¢, - - -+ run over the range 1,2,- - - , m,
and A, i,j,- -+ over the range 1,2, - - -, m unless otherwise specified. We
shall identify vector fields of M with their images under the differential
mapping. Thus if X is a vector field of M and has local expression X = X"3,,
then it has local expression X = X"B79, in N where 8, = 9/3x" 9, = 3/9u”,
B? = 9u®/dx", and Einstein’s summation convention is followed for repeated
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indices. If G denotes the Riemannian metric of N and G, its components, the
components g;; of the induced Riemannian metric g of M are given by
8 = GabB,ﬂ?j”. Let V and V denote the Riemannian connections of M and N
respectively; they are related by the Gauss formula:

(1.1) VY =VyY + H(X, Y),
where X, Y are vector fields of M, and H is the second fundamental form of
M.

Let e be the unit normal vector field on M. The Weingarten formula for M
is given by ‘

(1.2) Vye =-A(X) + Vye,

where the Weingarten map A, is related to the second fundamental form H
by

(1.3) 8(4,(X), Y) = G(H(X, Y), e)

for all vector fields X, Y of M. Lete,,- - - , e,_, form an orthonormal basis

in the normal bundle of M, and A* be the second fundamental form
corresponding to e, so that

(14) H(X,Y)=h*X, Y)e,,
where and in the sequel x, y run over the range 1, 2, - - - , m — n. The local
expression for the equation of Codazzi is
(1.5) Vihi™ — thkix = hly" — hkiyljyx,
where
(1.6) Vite, = 1%, with . = /.7,
Let e be a unit normal vector field on M. We set ¢ = ¢, and choose the
other normalse,, - - -, e,,_, in such a way that
det(al, AR a;.’ €t T, em—n) = 1.
Set A' = h, A, = A and l,.y1 = I, for convenience. Denote the principal
curvatures of M with respect to e by k;,- - -, k,. Define s, 5, - -, 5,3
PolPr: " Py by
(17) so=1 s = 2 kil T k,' s
i< <y 4
(1.8) po=1 p= 2 (ki)l’
and the /th mean curvature M, by
n
(19) MO = 1> (I)Ml = 5
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where (7) are binonﬁal coefficients and / = 1, 2, - - -, n. It is easy to see that
(1.10) D= h,.z"'h,.:% - b
The p;’s and the s;’s are related by Newton’s formulas:
(1.11) = s+ (D) s gy + (<15 =0,
where/ = 1,2, - - -, n. 5, can be solved in terms of p,, - - - , p,, and we have
D)ttt ukl
(112 5= ,l+z,2+0.2.. =t (t1§! ~)- N A
<4

2. Integral formulas

Let Y be a vector field of N defined along M. We may write Y=2Z+ P’e,,
where Z is a vector field tangential to M and p” = G(Y, ¢,). We call p” the
support function with respect to ¢,. We have

(2.1) vV.Y=(v,z2/ - P’y + (Zhy2 + p L2 + V.p7)e,.

We denote the tangential component of V,Y by tan V,Y so that

(22) V.Z) = p’h/ + g(tan V.7, 3,)g".

Consequently

(2.3) V.Z'=pp, +ph,’ + g(tan V.7, 3,)g",

where we have set p! = p and allowed z to run over the range 2, - - - , m — n.

Also the normal component of —V_i Y is given by
(24) G(V.Y,e) = Z/n + Vp* + p’l,*~.
Define 4/, Z,/ for{ = 0,1, - -, nby
h(O)ij = 8’]’ h(l)ij = hi,jhizil “ e hiil—l’

(2.9) A ) . .
Z(o)j = ZJ, Z([)j = h(,),-JZ'.
Using (1.5), (1.10) and (2.5) we obtain

i i 1 i 1 i
ViZy = (Vp)Zo-y) + “2‘(ViP2)Z(1—2) + - +7(V1~P1)Z

(2.6)
+ppq t+ h(l)'j{ g(tan V.Y, ai) + chjiz} + Z{_iuDj*

ij >
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where we have set
(2.7) Za-oi = 8 Zy_yy + BZy_pf + - - - +hy_1'Z,
(2.8) Dijk = l,.yhj"y - ljyhi"y.
Let ¢ be a real number. To obtain the main integral formula we compute
the following, using (1.12) and (2.6):
V(P Zuy) = 0" (Vo) Zyy + P [(Vip)Z -y
1 : 1 ;
(2.9.1) +’2‘(V;~P2)Z(1—2)' +--- +7(V,'P1)Z + oo,
+hay'{ g(tan V,¥,3,) + phy, ) + Z(l—l)kijD:jk]’
Vi(P tslz(l—l)i)
= pltpt—l(vip)z(l—l)i + pt[(vipl)z(l—l)i + pl{(vipl)Z(I—Z)i
1 » i 1 i
+5(V;’P2)Z(l—3) + - +m(vil’1—1)z + o,

+h(1_1)ji g(tan Vj }_’, 8,) + pz hju) + Z(z_z)kijD,'jk}],

(2.9.2)

Vi(P {92Z(I—ﬁ)i)
-1 1 2 i t 1 i
=1Ip (ViP)E,(Pl _Pz)z(l—z) +p [{Pl(V:P1) - ‘fvipz}z(l—z)
1 | .
(2.9.3) + 5({’12 - Pz){(ViP1)Z(1—3)' + E(Vil’z)z(l—@l + -
1w i hep—zy” V.Y, d h
+T~_2( Pr-)Z' + ppi_y + hg-z (g(tan Y, i) +p jiz)

+Zy-3:"D*} ],

V,(p’s,Z’)
(_l)tl+-~~ +y+! .
= tp Y (Vp)p e - - ptZi
,,+2,§, () - (g2 - l"[ PP Pi
(29.1+ 1) +ly=1

+Pt{vi(P111 < pM)Z
+pi < - pi(ep + g(tan V.Y, 8)g + poh,)} |-

Suppose the submanifold M of N has closed regular boundary B,_,.
Integrating (2.9.1)-(2.9.2) + - - - +(=1)%2.9./ + 1) over M and making use
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of (1.9), (1.11) and Stoke’s theorem we get
fB 14 2( 1)' 1lg| {Z(l)i - 312(1—1)i + -+ ("I)ISIZI}

n—1

dx' AN AdxTU AT A AdT

(2.10) = [ D(, 1) My + J (@) + cle)) av

+fMPt{h(1)ﬁ = sphg_f + -+ (<1 ') g(tan V.7, 8,-) av

+_[MtPt_1{Z(1)i - SIZ(I—I)i +-- + (_l)lslzi}(vip) dv,

where |g| denotes the determinant of the matrix ((g;;), dV denotes the
volume element of M, and

(2.11) Hy(e) = chjiz{h(l)ji = Sthg_pa + o0+ (—l)lslgij},
(2.12) Cl(e) = {Z(I_l)kij - SIZ(I_z)kij + - + (—l)l_lsl_lzj Slé}D k
[=1,2,---,n— 1, and for convenience we define C(e) = 0.

Lemma 2.1. The invariant Cfe) defined by (2.12) is zero for all 1=
L,2,---,n—1if :

(2.13) G(VyY, Vze) = G(V, Y, Vie)
for all vector fields X, Y, Z of M. In particular, C{e) = O if e is parallel in the
normal bundle.

Proof. Suppose (2.13) holds. Setting X =3, ¥ =d;, Z =0, and using
(1.1) we have

G(VyY, Vie) = G(hjk"ex, -3 Lyey) = —h’l,.
y=1

Hence (2.13) implies that D; jk =1, hj"y - ljyhik"’ = 0, which in view of (2.12)
implies that Ci(e) = 0. q.ed.

Thus the condition that C(e) = 0 forsome /, 1 </ < n — 1, is weaker than
the condition that e is parallel in the normal bundle. However, when m — n
= 2 the condition (2.13) is equivalent to the condition that e is parallel in the
normal bundle provided at least two principal curvatures with respect to e,
never vanish on M.

Lemma 2.2. The invariant H/e) defined by (2.11) can be expressed in the
Jorm
(2.19) Hy(e) = 2 *hy ki ki K

/22

where the surwmation is taken over all the distinct indices j, iy, - * -+ , .
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Proof. Since H,(e) is an invariant we can use the frame of principal
Vectors vy, vy, - - - , U, of M with respect to e to evaluate it. Thus since
gV = (k) 87 (no summation with respect to j), from (2.11) we have

(2.15)  Hfe) = ithﬁz{(@)’— sik) TH 4+ (D))
j=1
But (see [1, Lemma 1.1])
(k) —s(k) "+ (D =) D Kk kg

i< <y
TR A
So substituting in (2.15) we obtain (2.14).

Remark 2.1. (2.10) is the most general integral formula for a submanifold
M of a Riemannian manifold N of constant sectional curvature. If M is a
hypersurface of N, then p*=0,z2=2,3,--- , m—n, [, = 0, and (2.10)
together with the formula (2.4) for V.,p reduces to the integral formula
obtained earlier by Amur and Hegde [2].

We shall discuss other special cases in §3.

3. Applications of the integral formulas:
characterizations of umbilical submanifolds

We consider applications of the integral formulas (2.10) in obtaining
various characterizations of umbilical submanifolds under the hypothesis that
Y is some special vector field such as a concurrent vector field, a conformal
Killing vector field etc., and that there is a unit normal vector field e on M
satisfying the conditions Hye) = Cye) = 0 for some /, 0 </ < n ~ 1, where
Hye) and C/(e) are invariants given by (2.11) and (2.12) respectively.

Throughout the following discussion we shall assume that M is a closed
submanifold of a Riemannian manifold N of constant sectional curvature
and that the real number 7 = 0.

3.1. The case where Y is a concurrent vector field.
In the first instance we obtain integral formulas of Minkowski type from
(2.10), and then use them to characterize umbilical submanifolds.
Since we have assumed that the vector field ¥ of N defined along M is a
concurrent vector field, we have

(3.1) V,Y +3 =0.
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Hence

{hay? = syhg-n/ + - - - + (—1)lszgij}g(tan V.7, a-‘)
(3.2) =- {Pl —S$1pp -+ (_l)lml}
O+, ] )M

by virtue of (1.9) and (1.11). Observing that M is closed and ¢ = 0 and
substituting (3.2) in (2.10) we have

Proposition 3.1. Let N admit a concurrent vector field Y along M, and let e
be a unit normal vector field on M. Then

'+ 0, 5 ) [ M= pM)av = [ (Hie) + Clo)} av,
!I=0,1,---,n—1,

(3.3)

where M, is the Ith mean curvature with respect to e, H(e) and C[e) are
invariants given by (2.11) and (2.12) respectively, and p is the support function
with respect to e..

As immediate consequences of the above proposition we have the following
theorems.

Theorem 3.2. Let N admit a concurrent vector field ?along M Ifeisa
unit normal vector field on M such that H(e) = C(e) = 0 for some [,0 <[ <
n — 1, then

(3.4) J (M= pM,.)av =o.

Theorem 3.3. Let N admit a concurrent vector field Y along M. If P4, =
0, and e is unit normal field on M such that C(e) = O for some 1,0 <1 < n —
1, then

(3.5) J, (M= pMy, )V = 0

Proof. The condition p°4, = O implies that p*h;, = 0 for all i, j, so that
from (2.11) we have H,(e) = 0 for all /. The result then follows from Theorem
3.2

Theorem 3.4. Let N admit a concurrent vector field Y along M. For the unit
normal field e on M if Hy(e) =0, Vie = 0, where Z is the component of Y
tangential to M, and if M is umbilical with respect to each of the normals
ey v, e, ., then Ce) = 0 and

(3.6) fM(M1 — pM,)dV = 0.
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Proof. Since M is umbilical with respect to each of the normals
e, - ,e,_,, wehave

(37) hjiz = kzgji’ z = 2’ crr,m ”n,
where k7 are real valued functions on M. Now using (3.7) in (2.12) we get

Cle) = Zo,k"(1,8* — 1,8))

= (1 - n)kZ’,
= (n - )k’G(Vze, ¢,).

Thus if Vze = 0, then C(e) = 0, and from Theorem 3.1 we get (3.6). q.e.d.
In the above theorem, if we replace the condition Vze = 0 by

1, vl vl , ... Ul —
Ve Vz(l)e Vza)e Vz(,_,,e 0,

where
Ziy = ALZ), - - -, Zy-y= Ae(Z(z-z)),

then with computations analogous to those in Theorem 3.4 it can be shown
that C(e) =0,/ =1, 2,- - -, /. Thus we have _

Theorem 3.5. Let N admit a concurrent vector field Y along M, and let e be
a unit normal vector field on M. If there is an integer I, 0 < | < n, such that

() He) =0,

(i) Vze = 0, Vzl(i)e=0, i=12---,1-1
where Z is the component of Y tangential to M, and

(iii) M is umbilical with respect to each of the normal e,, - - - , e, _,,
then C(e) =0,k =1,2,---,1 and

f (M, — pM,,)dV = 0.
M

Remarks 3.1. (a) If M is a hypersurface of N, then clearly Hy(e) = Cye)
= 0 for all /, and (3.3) yields Minkowski-Hsiung formulas for M, [4].

(b) Suppose N = E™, and X is the position vector field of M in E™ with
respect to the origin of £™. Since we can identify V,X with 9, it is clear that
we can set ¥ = —X. Let X, be the normal part of X. Set e = e;, and choose
the other normals e,, - - - , ¢,_, in such a way that e, is in the direction of
X, — (X, - e)e;. Then clearly the support functions p> - - -, p™ " are all
zero and p! = (X - e)), p* = —(X - e,). Thus from (2.14) we have

Hfe) = (-1 Z(X - ehky - - - K,

L
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where the summation is taken over all distinct indices j, i« - - i, =
1,2,-- -, n Set

3 (_1)1+1 n 1
(38) Faie) =577 (, 5 1) Hie.

Further let e be parallel in the normal bundle. By Lemma 2.1 it follows that
C,(e) = Ofor all /. The formula (3.3) then becomes

(3.9) fM{M, +(X-e)M,, + F,(e)}dV =0, 1=0,1---,n—1

This formula was obtained by Chen and Yano [3] by a different procedure
which involves the use of vector forms. We have not only generalized the
above equations suitably, but also explicitly shown how the results of Chen
and Yano are related to ours.

(c) With the assumptions as in (b), Theorems 3.2 and 3.3 reduce to those
obtained by Chen and Yano [3].

(d) In Theorems 3.4 and 3.5 we find concrete illustrations of the fact that a
condition weaker than the condition that e be parallel in the normal bundle
can be used to make C,(e) = O for some /, 0 </ < n — 1. For, the condition
Vze = 0 in Theorem 3.4 or the condition Vze =Vz e=--- =Vz ¢=0
in Theorem 3.5 are clearly weaker than the condition that e be parallel in the
normal bundle.

We need the following well-known lemmas for proving results on umbilic-
ity of M.

Lemma 3.6. Let M,/ =0,1,---,n,beasin(1.9). Then

Mlz - M, M, > 0,
and further equality in (3.7) implies that M is umbilical with respect to the unit
normal vector field e.

Lemma 3.7. For integers I, s such that 0 < 1 <s <n, if My, My, -+, M,

are positive, then
M, < _@ <--- < M,
M 1+1 M +2

and equality at any stage implies that M is umbilical with respect o e.

Lemma 3.8 (Chen and Yano [3]). For integers I, s such that 1 <1 <s < n,
if My, - - -, M, are positive and there are constants c(I < j <s — 1) such that
M, = 352} ;M;, then

s—1
M_ -2 GM;_y > 0,
j=1

where the equality holds only if M is umbilical with respect to e.



522 D. J. SHETTY & KRISHNA AMUR

The following theorems which give characterization of the umbilicity of M
are extension of those proved by Chen and Yano [3]. We sketch the proofs
briefly and for details we refer to [3].

Theorem 3.9. If there are a unit normal vector field e on M and an integer |,
1 <! < n, such that

OM,. >0, ,

i) p > M,/M,,, (orp <M /M,,)),

(iii) H(e) =0,C(e) =0, j=1-1,1,
then M is umbilical with respect to e.

Proof. By (ii) and Theorem 3.2 we have

M,
P =7 and J (M = pM)aY =0,
which together with (i) imply M,, ,M,_, — M;* = 0. Thus by Lemma 3.6 M is
umbilical with respect to e. ,

Theorem 3.10. If there are a unit normal vector field e on M and an integer,
I, 1 <1 < n, such that

OM,_, M, My, >0,

Gi)p < M,_,/M,

(iii) Hy(e) = 0, C(e) = 0,
then M is umbilical with respect to e.

Proof. By Theorem 3.2 and (iii) we have [,(M, — pM,, )dV = 0 and by
(i) and Lemma 3.7 it follows that p < M,_,/M, < M,/ M, ,. These results
together imply p < M,_,/M, < M,/ M, , = p. So by Lemma 3.6, M is um-
bilical with respect to e.

Theorem 3.11. If there are a unit normal vector field e on M and integers |,
s, 1 <1 <s < n, such that

M, M, -, M arepositive,
() M, = Ej-;,l &M, for some constants ¢; > 0,1 < j < s,
(i) H(e) =0,C(e) =0, j=I—-1,---,5—2,

then M is umbilical with respect to e.

Proof. Proof follows from Theorem 3.2 and Lemma 3.8.

Theorem 3.12. If there are a unit normal vector field e on M such that

OM, M, >0,

(it) the sum X7_, 1/k; of principal radii of curvatures of M with respect to e
is constant,

(i) H(e) =0, C(e) =0, j=n—-2,n—1,
then M is umbilical with respect to e.

Proof. Follows from Theorem 3.11 and the fact that Z7_,1/k =
n M,_,/M, = constant.
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Theorem 3.13. If there are a unit normal vector field e on M and an integer

1,1 <1 < n, such that
() M,, M, are constants,

(i) H(e) =0,C(e) =0, j=1~-1,1,
then M is umbilical with respect to e.

Proof. By (i) and Theorem 3.2 we have

M, 1
fMP v = M,y fMdV B TiszMl_l v,

which implies [,/ (M, M,_, — M?)dV = 0, and hence from Lemma 3.6 it
follows that M is umbilical with respect to e.

Theorem 3.14. If there is a unit normal vector field e on M such that

(i) M, = constant,

(if) Ho(e) = p/ = 0, Hy(e) =0, Cy(e) =0,

(iii) p keeps the same sign on M,
then M is umbilical with respect to e.

Proof. By (i) and Theorem 3.2 we have

fMdV = M, fMp dv = 7147 fMp M, dv,

which implies f,, p(M,> — M,) dV = 0. If p keeps the same sign on M, then
M;?> — M, = 0 which by Lemma 3.6 implies that M is umbilical with respect
toe.

Theorem 3.15. If there is a unit normal vector field e on M such that

(@) Hole) = 0, Hy(e) = 0, ~

(i) Ve = O where Z is the tangential part of Y,

(iii) M is umbilical with respect to orthonormal vector fields e,, - - - , e,,_,
Where e, ey, * - + , e,,_, form an orthonormal basis of the normal bundle,

(iv) M, = constant,

(V) p keeps the same sign on M,
then M is a totally umbilical submanifold of N.

Proof. The result follows from Theorems 3.4 and 3.14.

Remark 3.2, If the mean curvature vector of the submanifold M of a
Euclidean space E™ (tesp. a sphere $™ in E™*!) is assumed to be parallel in
the normal bundle of M in E™(S™), it can be shown that M, is constant [9].
Further if the mean curvature vector is assumed to be in the direction of the
first normal e and p“y;, =0 for all i,j, then Hy(e) =0, Hy(e) =0 and
C,(e) = 0. Hence Theorem 3.14 generalizes the following theorems due to
Yano {9].

Theorem A. Suppose that the mean curvature vector of a compact orientable
submanifold M of a Euclidean space E™ does not vanish, and we take the first
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unit normal e, to M in the direction of the mean curvature vector. If the mean
curvature vector is parallel with respect to the connection induced in the normal

bundle of M in E™, p°h;, = 0 and p has a fixed sign, then the submanifold lies
on a sphere S™ 1

Theorem B. Suppose that the mean curvature vector of a compact orientable
submanifold M of a sphere S™™' does not vanish, and we take the first unit
normal e, to M in the direction of the mean curvature vector. If the mean
curvature vector is parallel with respect to the connection induced in the normal
bundle of M in S™1, P°h;, = 0 and p has a fixed sign, then the submanifold
lies on a sphere S™~2,

3.2. The case where Y is a conformal Killing vector field.

Since

g(tan V.Y, ak) = BBV, Y,

where Y, = G, Y? we have,
(3.10)

{h0)? = sihg-p¥ + - -+ + (-D'sg"¥} g(tan V,7, 3,)
1 . . .
=5 {ha)? = siha-n + - - - + (-1)'sg"} BB LyGy,
where LyG,, is the Lie derivative of the metric tensor G,, with respect to Y.

Throughout this part we assume that Y is a conformal Killing vector field so
that

(3.11) LyG,, = 2pG,,

where p is a function. Substituting from (3.10) and (3.11) in (2.10) and
observing that M is closed and compact and that ¢ = 0 we get

a1z OV, 10) [ M+ pMDaV = [ (H(9) + o)) a,
[=0,1,---,n—1.

As immediate consequences of this integral formula we have

Theorem 3.16. Let N admit a conformal Killing vector field Y along M
satisfying (3.11). If there are a unit normal vector field e on M and an integer |,
0 < I < n, such that H(e) = 0, C(e) = 0, then

(3.13) fM(pM, + pM,, ) dV = 0.

Theorem 3.17. Let N admit a conformal Killing vector field Y along M
satisfying (3.11). If there is a unit normal vector field e on M such that the
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normal component of Y is parallel to e and C(e) = 0 for some 1,0 < [ < n, then
Hye) = 0 and

(3.14) J (oM, + pM,,) v =0,

Theorem 3.18. Let N admit a conformal Killing vector field Y along M
satisfying (3.11). If there is a unit normal field e such that H(e) = 0 and
Vze = 0, where Z is the component of Y tangential to M, and if M is umbilical
with respect to each of normal fields, e, - - - , e, _,, wheree, e,,- - - ,e,_,
an orthonormal frame in the normal bundle, then C (e) 0 and

fM(le + pM,) dV = 0.

is

From Theorems 3.16, 3.17 and 3.18 we have the following results on the
umbilicity of M.

Theorem 3.19. If e is a unit normal vector field on M such that

(i) M, = constant,

(ii) Ci(e) = 0, Hy(e) = H\(e) =

(i) p keeps the same sign on M,
then M is umbilical with respect to e.

Proof. By Theorem 3.16 and (ii) we have

[e+pM)av=0, [ (oM, +pM)av=o,
M M

which together with (i) yield
fp(M12 — M,)dv =0.
M

From (iii) and Lemma 3.7 it follows that M,> — M, =0, and hence M is
umbilical with respect to e.

Theorem 3.20. If e is a unit normal vector field on M, and there is an
integer I, 0 < < n, such that

(i) M, = constant,

() M,, - - -, M, are positive,

(iii) H(e) = 0, C(e) = 0, Hy(e) = 0

(iv) p keeps the same sign on M,
then M is umbilical with respect to e.

Proof. By (1) and Theorem 3.16 we have

[ (oM, + pM,M)av = 0, [ (oM, + pM,,)aV =0,
M M

which yield
fMP(MIM — M, )dVv =0.
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From (iv) and Lemma 3.7 it follows that MM, — M,,, = 0, and hence M is
umbilical with respect to e.

Theorem 3.21. If e is a unit normal vector field on M such that

@ p+pM, > 0(orp +pM, <0),

(i) Cy(e) = 0, Hi(e) = 0, Hy(e) = 0,

(iii) p keeps the same sign on M,
then M is umbilical with respect to e.

Proof. By Theorem 3.16, (i) and (ii)) we have p + pM, =0 and
fapM, + pMy)dV = 0. Hence

f p(M? — Mp)av =o.
M

Consequently by (iii) and Lemma 3.6 we get the desired result.

Theorem 3.22. If e is a unit normal vector field on M, and there is an
integer I, 0 <1 < n, such that

()M, >0,

(ip > — M,_ /M, (orp < -M,_,/ M),

(i) H(e) =0, C(e) =0, j=1—-1,1,

(iv) p keeps the same sign on M,
then M is umbilical with respect to e.

Proof. By (ii), (iii) and Theorem 3.16 we get

f%l(M,z — M,_\M,,)dV =0.

Hence from Lemma 3.6 and (iv) it follows that M is umbilical with respect
toe.
Theorem 3.23. If e is a unit vector field on M, and there is an integer
1, 0 <1 < n, such that
OM,_,M, M, , >0,
(i)p > -pM,_\/ M,
(iii) H(e) = 0, Cf(e) = 0,
(iv) p is positive on M,
then M is umbilical with respect to e.
Proof. The result follows from Theorem 3.16 and Lemma 3.7.
Theorem 3.24. If e is a unit normal field on M such that
(i) M, is constant,
(if) Ho(e) = 0, Hy(e) = 0,
(iii) Ve = 0, where Z is the tangential part of Y,
(iv) p keeps the same sign on M,
(v) M is umbilical with respect to each of normal fields e,, - - - , e, _,, where
e, ey ", e,_, Jorm an orthonormal frame in the normal bundle,
then M is toially umbilical submanifold of N.
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Proof. Ttis a consequence of Theorems 3.18 and 3.19.
Theorem 3.25. If e is a unit normal vector field on M such that
DHp+pM >0,

(ii) Hy(e) = 0, H,(e) = 0.

(iiiy Ve = 0, where Z is the tangential part of Y,

(iv) p keeps the same sign on M,

(v) M is umbilical with respect to each of normal fields e,, - - - , e,,_,, where
e, e, ,e,_, form an orthonormal basis in the normal bundle,
then M is totally umbilical submanifold of N.

Proof. The result follows from Theorems 3.16 and 3.21.

Remark 3.3. Suppose e is a unit vector field in the direction of mean
curvature vector of M, and the conformal Killing vector field Y is such that
its normal part is parallel to e. Further suppose that e is parallel in the normal
bundle. Then C)(e) = 0, He) = 0 for all /. With this setup theorems analo-
gous to Theorems 3.19 to 3.21 were obtained by Katsurada and Kojyo [6],
Katsurada and Nagai [7].

3.3. The case where Y is a concircular vector field.

Throughout this part Y is assumed to be a concircular vector field, that is,
Y satisfies
(3.15) VoY, = 0Gy, + X, Y,
where p is a function, and X, are the components of a 1-form associated with
a gradient vector field X of N defined along M. We have
(3.16) L3Gy, = 20Gy, + X, 7, + X, Y,
Setting Bj”)?b = X; and substituting (3.16) and (3.10) and using (1.10), (1.11)
and (1.9) we get
3.17)
{h(])kj - Slh(l— l)kj + - + (—I)ISlgﬁ} g(tan Vj)_,, ak)

= (—1)l+1(l + 1)(1 _:l_ l)pMI + {Z(I)’ - SlZ(l._l)i +--- + (—l)lSlZi},Xfi.

Substituting from (3.17) in (2.10) and observing that M is closed and compact
and that z = 0 we get

O+ D(, 5 [ oM+ pMy DAY
(3.18) M
= [ {H(e) + Ce) + K(e)}aV,
M
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where
(3.19) K}(e) = {Z(])l - >SIZ(1_1)'. + e + (—l)lslzi}Xi.

In view of (3.18) we have

Theorem 3.26. Let N admit a concircular vector field Y along M satisfying
(3.15). If there are a unit normal vector field e on M and an integer 1,0 <1 <
n, such that H(e) = 0, C(e) = 0 and K,(e) = 0, then

(3.20) J (oM, + pMi,)av = 0.

The proofs of the following theorems each of which gives a characterization
of an umbilical submanifold are similar to those of §3.2. Hence we simply
state the theorems.

Theorem 3.27. If e is a unit normal vector field on M such that

(i) M, = constant,
(i) H(e) = Ce) = K(e)=0, j=0,1,

(i) p keeps the same sign on M,
then M is umbilical with respect to e.

Theorem 3.28. If e is a unit normal vector field on M, and there is an
integer 1, 0 < [ < n, such that

(1) M, is constant,
() My, -« -, M, are positive,

(iii) Hy(e) = K(e) = Ce) = 0, Hy(e) = 0

@iv) p keeps the same sign on M,
then M is umbilical with respect to e.

Theorem 3.29. If e is a unit normal vector field on M such that

D p+pM; > 0(orp+pM, <0),
(i) C(e) = Hfe) = K(e) = 0, 1=0,1,

(iii) p keeps the same sign on M,
then M is umbilical with respect to e.

Theorem 330. If e is a unit normal vector field on M, and theré is an
integer I, 0 < I < n, such that

OM,_, M, M, >0,
(i)p > -pM,_\/ M,

(iii) H{e) = 0, Ci(e) = 0, K(e) = O

(iv) p is positive on M,
then M is umbilical with respect to e.

Remark 3.4. If the ambient space is Euclidean m-space E™, and M is
imbedded into a hypersphere of E™ centered at C, then M is said to be a
spherical submanifold or simply spherical, X — C is called the radius vector
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field where X is the position vector field of M in E™ with respect to the origin
of E™. Chen and Yano [3] proved the following theorem.

Theorem C. If M is imbedded in E™, then there exists a normal vector field
e %= 0 over M such that

(1) e is parallel in the normal bundle, and

(2) M is umbilical with respect to e,
when and only when M is spherical, and e is parallel to the radius vector field.

By taking N = E™ and assuming that the unit normal vector field e is
parallel in the normal bundle, the conclusion in each of the theorems, in §3,
on umbilicity of M with respect to e can be replaced by “M is spherical, and
e is parallel to the radius vector field”.
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